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Multimodal Artificial Intelligence

➢ Real-world Use Cases: 

• Discriminative tasks: Multimodal/cross-modal Understanding, Alignment, Multimodal fusion, …

• Generative tasks: Cross-modal guided data synthesis, Video captioning, grounding, …
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Artificial General Intelligence (AGI)Background
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User-AGI InteractionsMotivation

➢ Pretraining Stage

➢ Fine-tuning Stage
• Training: RLHF, meta-tuning, …

• Instruction/Data: Prompts, RAG, …

• Model modification: PEFT (Adaptors, Prefix Tuning, …)
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Privacy Issue in User-AGI InteractionsMotivation

➢ Problem?

Privacy Leakage

(e.g., products such as digital medical applications; 

VR products; document understanding)
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Privacy-preserving AGI via User CollaborationGoal
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Can we use 
Personalized Federated Learning (PFL) [1]
to achieve
• user privacy of AGI while handling
• diverse modalities and task categories?

audio

Personal task-specific & 
modality-specific models

AGI model

AGI model

[1] Tan, Alysa Ziying, et al. "Towards personalized 
federated learning." IEEE Transactions on Neural 

Networks and Learning Systems (2022).
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Problem SettingFormulation

➢ Local Training: Totally personal, no AGI benefit



Formulation

➢ Our Setting: leverage user collaboration to learn an AGI model
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4 Heterogeneity Patterns:

• Domain shift

• Concept shift

• Modality gap (image, text, 

audio, video) across different domains

• Task type difference (object 

classification, image captioning, audio 

generation, emotion recognition)

Formulation Problem Setting
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Unique Challenges compared to Existing Solutions

Existing Solutions: Multimodal FL

via Latent Space Alignment

Challenge: Suboptimal solution with 

large modality gap & task gap
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A Closer Look: Knowledge Unalignment between Users

True Knowledge Alignment & Conflict
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[1] Riemer, Matthew, et al. "Learning to Learn without Forgetting by Maximizing Transfer and Minimizing Interference."ICLR. 2019.
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• Insufficient Positive Knowledge Transfer

• Unwanted Negative Knowledge Transfer

A Closer Look: Knowledge Unalignment between Users

True Knowledge Alignment & Conflict
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Consequence:
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Main Idea

One aligned latent space

Base2

Base3

Base1

Multiple disentangled latent subspaces

• maximized Positive Knowledge Transfer

• minimized Negative Knowledge Transfer

Disentangle

• Insufficient Positive Knowledge Transfer

• Unwanted Negative Knowledge Transfer

...
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Global Objective
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Global Objective

Disentangle Knowledge

Sharing Schemes (Details)
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How to Solve Global Objective?

Research Question: How to maximize positive transfer while minimizing negative transfer?
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Supernetwork (MoE)

on Server

• Client Personal Models (MoE)

3

• Model architectures based on Mixture of Experts

Communication
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• Automatic routing during communication

Routes of client 3

Routes of client 2

Routes of client 1

Communication
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Purification

Without Explicit Disentanglement

A more purified knowledge split is beneficial to produce more aligned gradients.

• Multiple disentangled latent subspaces

With Explicit Disentanglement

v.s
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Latent space

Disentanglement
(e.g., orthogonal constraint,

alignment regularization loss)

3

Purification

• Leverage explicit disentanglement losses to enhance purification
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Datasets/Simulations

Client inputs     Client outputs

Client inputs     Client outputs

“Multimedia 

Understanding”

Cross-modal Generation 

& Understanding

• #clients (<50), #modalities (<5), #downstream tasks (<5)

• model size: 4 self/cross-attention layers, 3 heads
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Some Experimental Results 

Methods Average Testing Accuracy on Classification Tasks

Local 88.23 ± 0.72 70.23 ± 0.93

FedAvg 84.63 ± 0.02 74.12 ± 0.93

Multi-FedAvg 84.82 ± 0.29 69.65 ± 0.73

FedMSplit 87.37 ± 0.03 73.25 ± 0.31

Ours 96.38 ± 0.41 75.96 ± 0.83

“Multimedia 

Understanding” Cross-modal Generation 

& Understanding

• Server model size: 22M

• Average of client model sizes: 63% (Quantization: 15%)
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T

Thank You!

Q & A
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